Ternary nanocomposites for photocatalytic degradation of endocrine disruptors

Delia Teresa Sponza, Speaker at Materials Conferences
Professor

Delia Teresa Sponza

Dokuz Eyul University, Turkey

Abstract:

The ongoing challenge of water pollution necessitates innovative approaches to remove organic contaminants from wastewater. In this work, new two-dimensional S-scheme heterojunction photocatalysts Bi2O3/CdS and MoS2/Bi2O3/CdS that are intended for the effective photocatalytic destruction of endocrine disruptors, dangerous organic pollutants, are synthesized and characterized. Utilizing a solvothermal method, successfully generated these ternary nanocomposites, which were characterized through various techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), high resolution transmission electronmicroscopy (HRTEM), Brunauer-Emmett-Telle (BET) and diffuse reflectance spectroscopy (DRS). Our results demonstrated that the Bi2O3/CdS heterojunction achieved an 86% degradation rate of endocrine disruptors, while the MoS2/Bi2O3/CdS composite exhibited exceptional photocatalytic performance, achieving nearly complete degradation (99%) within 120 min under visible light irradiation. Most importantly the improved photocatalytic activity of MoS2/Bi2O3/CdS heterojunction originated from the release of internal electric field in S-scheme heterojunction. This enhanced activity is attributable to the synergistic effects of the heterojunctions that facilitate more effective charge separation and generation.

Biography:

Prof. Dr. Delia Teresa Sponza is currently working as a professor at Dokuz Eylul University, Department of Environmental Engineering. Scientific study topics are; Environmental engineering microbiology, Environmental engineering ecology, Treatment of fluidized bed and activated sludge systems, Nutrient removal, Activated sludge microbiology, Environmental health, Industrial toxicity and toxicity studies, The effect of heavy metals on microorganisms, Treatment of toxic compounds by anaerobic / aerobic sequential processes, Anaerobic treatment of organic chemicals that cause industrial toxicity and wastewater containing them, Anaerobic treatability of wastewater containing dyes, Treatment of antibiotics with anaerobic and aerobic sequential systems, Anaerobic and aerobic treatment of domestic organic wastes with different industrial treatment sludges, Treatment of polyaromatic compounds with bio-surfactants in anaerobic and aerobic environments, Treatment of petrochemical, Textile and olive processing industry wastewater by sonication, Treatment of olive processing industry wastewater with nanoparticles and the toxicity of nanoparticles. She has many international publications

Copyright 2024 Mathews International LLC All Rights Reserved

Watsapp
Top